Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Organ Transplantation ; 12(2):169-176, 2021.
Article in Chinese | EMBASE | ID: covidwho-2327450

ABSTRACT

Renal transplantation is the optimal approach to improve the quality of life and restore normal life for patients with end-stage renal diseases. With the development of medical techniques and immunosuppressants, the short-term survival of renal graft has been significantly prolonged, whereas the long-term survival remains to be urgently solved. Renal ischemia-reperfusion injury (IRI), acute rejection, chronic renal allograft dysfunction, renal fibrosis and other factors are still the major problems affecting the survival of renal graft. Relevant researches have always been hot spots in the field of renal transplantation. Meantime, 2020 is an extraordinary year. The novel coronavirus pneumonia (COVID-19) pandemic severely affects the development of all walks of life. Researches related to renal transplantation have also sprung up. In this article, the frontier hotspots of clinical and basic studies related to renal transplantation and the COVID-19 related researches in the field of renal transplantation in China were reviewed, aiming to provide novel therapeutic ideas and strategies.Copyright © 2021 Journal of Zhongshan University. All Rights Reserved.

2.
Respir Res ; 24(1): 125, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312967

ABSTRACT

BACKGROUND: Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients. METHODS: We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA). RESULTS: TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission. CONCLUSIONS: The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , Interleukin-6 , Longitudinal Studies , Hospitalization , Lactate Dehydrogenases , Biomarkers
3.
Emerg Infect Dis ; 29(5): 1011-1014, 2023 05.
Article in English | MEDLINE | ID: covidwho-2318749

ABSTRACT

Infection with Borrelia miyamotoi in California, USA, has been suggested by serologic studies. We diagnosed B. miyamotoi infection in an immunocompromised man in California. Diagnosis was aided by plasma microbial cell-free DNA sequencing. We conclude that the infection was acquired in California.


Subject(s)
Borrelia Infections , Borrelia , Ixodes , Animals , Humans , Male , Borrelia/genetics , Borrelia/isolation & purification , Borrelia Infections/diagnosis , California/epidemiology , Immunocompromised Host
4.
J Clin Microbiol ; 61(3): e0185922, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2263013

ABSTRACT

Timely diagnosis remains an unmet need in non-neutropenic patients at risk for aspergillosis, including those with COVID-19-associated pulmonary aspergillosis (CAPA), which in its early stages is characterized by tissue-invasive growth of the lungs with limited angioinvasion. Currently available mycological tests show limited sensitivity when testing blood specimens. Metagenomic next-generation sequencing (mNGS) to detect microbial cell-free DNA (mcfDNA) in plasma might overcome some of the limitations of conventional diagnostics. A two-center cohort study involving 114 COVID-19 intensive care unit patients evaluated the performance of plasma mcfDNA sequencing for the diagnosis of CAPA. Classification of CAPA was performed using the European Confederation for Medical Mycology (ECMM)/International Society for Human and Animal Mycoses (ISHAM) criteria. A total of 218 plasma samples were collected between April 2020 and June 2021 and tested for mcfDNA (Karius test). Only 6 patients were classified as probable CAPA, and 2 were classified as possible, while 106 patients did not fulfill CAPA criteria. The Karius test detected DNA of mold pathogens in 12 samples from 8 patients, including Aspergillus fumigatus in 10 samples from 6 patients. Mold pathogen DNA was detected in 5 of 6 (83% sensitivity) cases with probable CAPA (A. fumigatus in 8 samples from 4 patients and Rhizopus microsporus in 1 sample), while the test did not detect molds in 103 of 106 (97% specificity) cases without CAPA. The Karius test showed promising performance for diagnosis of CAPA when testing plasma, being highly specific. The test detected molds in all but one patient with probable CAPA, including cases where other mycological tests from blood resulted continuously negative, outlining the need for validation in larger studies.


Subject(s)
Aspergillosis , COVID-19 , COVID-19/complications , Aspergillosis/diagnosis , Aspergillosis/microbiology , Humans , Middle Aged , Cell-Free Nucleic Acids/isolation & purification , Male , Female
5.
Indian J Clin Biochem ; : 1-10, 2022 Aug 21.
Article in English | MEDLINE | ID: covidwho-2272325

ABSTRACT

Lymphocyte dysregulation in coronavirus disease-19 (COVID-19) is a major contributing factor linked to disease severity and mortality. Apoptosis results in the accumulation of cell-free DNA (cfDNA) in circulation. COVID-19 has a heterogeneous clinical course. The role of cfDNA levels was studied to assess the severity and outcome of COVID-19 patients and correlated with other laboratory parameters. The current case series included 100 patients with mild COVID-19 (MCOV-19) and 106 patients with severe COVID-19 (SCOV-19). Plasma cfDNA levels were quantified using SYBR green quantitative real-time PCR through amplification of the ß-actin gene. CfDNA level was significantly higher in SCOV-19 at 706.7 ng/ml (522.6-1258) as compared to MCOV-19 at 219.8 ng/ml (167.7-299.6). The cfDNA levels were significantly higher in non-survivor than in survivors (p = 0.0001). CfDNA showed a significant correlation with NLR, ferritin, LDH, procalcitonin, and IL-6. The diagnostic sensitivity and specificity of cfDNA in the discrimination of SCOV-19 from MCOV-19 were 90.57% & 80%, respectively. CfDNA showed a sensitivity of 94.74% in the differentiation of non-survivors from survivors. CfDNA levels showed a significant positive correlation with other laboratory and inflammatory markers of COVID-19. CfDNA levels, NLR, and other parameters may be used to stratify and monitor COVID-19 patients and predict mortality. CfDNA may be used to predict COVID-19 severity with higher diagnostic sensitivity.

6.
Ann Clin Lab Sci ; 52(3): 374-381, 2022 May.
Article in English | MEDLINE | ID: covidwho-1918736

ABSTRACT

OBJECTIVE: Exploration of biomarkers to predict the severity of COVID-19 is important to reduce mortality. Upon COVID-19 infection, neutrophil extracellular traps (NET) are formed, which leads to a cytokine storm and host damage. Hence, the extent of NET formation may reflect disease progression and predict mortality in COVID-19. METHODS: We measured 4 NET parameters - cell-free double stranded DNA (cell-free dsDNA), neutrophil elastase, citrullinated histone H3 (Cit-H3), and histone - DNA complex - in 188 COVID-19 patients and 20 healthy controls. Survivors (n=166) were hospitalized with or without oxygen supplementation, while non-survivors (n=22) expired during in-hospital treatment. RESULTS: Cell-free dsDNA was significantly elevated in non-survivors in comparison with survivors and controls. The survival rate of patients with high levels of cell-free dsDNA, neutrophil elastase, and Cit-H3 was significantly lower than that of patients with low levels. These three markers significantly correlated with inflammatory markers (absolute neutrophil count and C-reactive protein). CONCLUSION: Since the increase in NET parameters indicates the unfavourable course of COVID-19 infection, patients predisposed to poor outcome can be rapidly managed through risk stratification by using these NET parameters.


Subject(s)
COVID-19 , Extracellular Traps , Biomarkers/metabolism , COVID-19/diagnosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/metabolism , Extracellular Traps/metabolism , Histones/blood , Histones/metabolism , Humans , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Neutrophils/metabolism , Prognosis
7.
Transpl Int ; 35: 10448, 2022.
Article in English | MEDLINE | ID: covidwho-1917242

ABSTRACT

The routine surveillance of kidney transplant allografts has relied on imperfect non-invasive biomarkers such as creatinine and urinary indices, while the gold standard allograft biopsy is associated with risk of bleeding, organ injury and sampling errors. Donor derived cell free DNA (dd-cfDNA) is being employed as a biomarker that addresses limitations of these surveillance methods, albeit has inherent drawbacks. This review provides an update on the enhanced understanding of dd-cfDNA and its expanded use beyond the conventional indication of detecting allograft rejection.


Subject(s)
Cell-Free Nucleic Acids , Kidney Transplantation , Biomarkers , Graft Rejection/diagnosis , Humans , Kidney Transplantation/adverse effects , Tissue Donors
8.
Mediastinum ; 5: 27, 2021.
Article in English | MEDLINE | ID: covidwho-1675448

ABSTRACT

OBJECTIVE: In this review, we evaluate the role of liquid biopsy in managing lung cancer patients during the still ongoing coronavirus disease 2019 (COVID-19) healthcare emergency. BACKGROUND: The novel influenza coronavirus (severe acute respiratory syndrome coronavirus or SARS-CoV-2) has upended several aspects of our lives, including medical activities. In this setting, many routine cancer diagnostic and therapeutic procedures have been suspended, leading to delays in diagnosis, treatments, and, ultimately, increases in cancer mortality rates. Equally drastic has been the impact of COVID-19 on clinical trials, many of which have been stalled or have never begun. This has left many patients who were hoping to receive innovative treatments in a limbo. Although, as of today, the introduction of drastic security measures has been crucially important to contain the pandemic, one cannot ignore the need to continue providing chronically ill patients all the health care they need, in terms of detection, prevention, and treatment. In these unprecedented times, liquid biopsy, more than ever before, may play a relevant role in the adequate management of these frail patients. METHODS: we performed a deep analysis of the recent international literature published in English on PUBMED in the last six months focused on the impact of SARS-CoV-2 on the management of lung cancer patients, focusing the attention on the role of liquid biopsy. CONCLUSIONS: COVID-19 pandemic has significantly modified our lives and overall medical practice. In these unprecedented times, liquid biopsy may represent a valid and less time-consuming diagnostic approach than conventional tissue and cytological specimens.

9.
Viruses ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1674821

ABSTRACT

WHO has declared COVID-19 as a worldwide, public health emergency. The elderly, pregnant women, and people with associated co-morbidities, including pulmonary disease, heart failure, diabetes, and cancer are the most predisposed population groups to infection. Cell-free DNA is a very commonly applied marker, which is elevated in various pathological conditions. However, it has a much higher sensitivity than standard biochemical markers. cfDNA appears to be an effective marker of COVID-19 complications, and also serves as a marker of certain underlying health conditions and risk factors of severe illness during COVID-19 infection. We aimed to present the possible mechanisms and sources of cfDNA released during moderate and severe infections. Moreover, we attempt to verify how efficiently cfDNA increase could be applied in COVID-19 risk assessment and how it corresponds with epidemiological data.


Subject(s)
COVID-19/diagnosis , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/blood , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/complications , Cell Death/genetics , Female , Genetic Markers , Humans , Pregnancy , Pregnant Women , Risk Assessment , Risk Factors
10.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512381

ABSTRACT

Tumor-associated cell-free DNAs (cfDNA) play an important role in the promotion of metastases. Previous studies proved the high antimetastatic potential of bovine pancreatic DNase I and identified short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)and fragments of oncogenes in cfDNA as the main molecular targets of enzyme in the bloodstream. Here, recombinant human DNase I (commercial name Pulmozyme®), which is used for the treatment of cystic fibrosis in humans, was repurposed for the inhibition of lung metastases in the B16 melanoma model in mice. We found that Pulmozyme® strongly reduced migration and induced apoptosis of B16 cells in vitro and effectively inhibited metastases in lungs and liver in vivo. Pulmozyme® was shown to be two times more effective when administered intranasally (i.n.) than bovine DNase I, but intramuscular (i.m.) administration forced it to exhibit as high an antimetastatic activity as bovine DNase I. Both DNases administered to mice either i.m. or i.n. enhanced the DNase activity of blood serum to the level of healthy animals, significantly decreased cfDNA concentrations, efficiently degraded SINE and LINE repeats and c-Myc fragments in the bloodstream and induced apoptosis and disintegration of neutrophil extracellular traps in metastatic foci; as a result, this manifested as the inhibition of metastases spread. Thus, Pulmozyme®, which is already an approved drug, can be recommended for use in the treatment of lung metastases.


Subject(s)
Cell-Free Nucleic Acids/blood , Deoxyribonuclease I/metabolism , Long Interspersed Nucleotide Elements/genetics , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Short Interspersed Nucleotide Elements/genetics , Animals , Cell Line, Tumor , Deoxyribonuclease I/pharmacology , Disease Models, Animal , Drug Repositioning , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Proto-Oncogene Proteins c-myc/blood , Proto-Oncogene Proteins c-myc/genetics , Recombinant Proteins/pharmacology
12.
Med (N Y) ; 2(4): 411-422.e5, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1033380

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) primarily affects the lungs, but evidence of systemic disease with multi-organ involvement is emerging. Here, we developed a blood test to broadly quantify cell-, tissue-, and organ-specific injury due to COVID-19. METHODS: Our test leverages genome-wide methylation profiling of circulating cell-free DNA in plasma. We assessed the utility of this test to identify subjects with severe disease in two independent, longitudinal cohorts of hospitalized patients. Cell-free DNA profiling was performed on 104 plasma samples from 33 COVID-19 patients and compared to samples from patients with other viral infections and healthy controls. FINDINGS: We found evidence of injury to the lung and liver and involvement of red blood cell progenitors associated with severe COVID-19. The concentration of cell-free DNA correlated with the World Health Organization (WHO) ordinal scale for disease progression and was significantly increased in patients requiring intubation. CONCLUSIONS: This study points to the utility of cell-free DNA as an analyte to monitor and study COVID-19. FUNDING: This work was supported by NIH grants 1DP2AI138242 (to I.D.V.), R01AI146165 (to I.D.V., M.P.C., F.M.M., and J.R.), 1R01AI151059 (to I.D.V.), K08-CA230156 (to W.G.), and R33-AI129455 to C.Y.C., a Synergy award from the Rainin Foundation (to I.D.V.), a SARS-CoV-2 seed grant at Cornell (to I.D.V.), a National Sciences and Engineering Research Council of Canada fellowship PGS-D3 (to A.P.C.), and a Burroughs-Wellcome CAMS Award (to W.G.). D.C.V. is supported by a Fonds de la Recherche en Sante du Quebec Clinical Research Scholar Junior 2 award. C.Y.C. is supported by the California Initiative to Advance Precision Medicine, and the Charles and Helen Schwab Foundation.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Virus Diseases , Humans , Methylation , SARS-CoV-2/genetics
13.
J Perinat Med ; 48(9): 943-949, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-634514

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus, was first identified in December 2019 in Wuhan, China and spread rapidly, affecting many other countries. The disease is now referred to as coronavirus disease 2019 (COVID-19).The Italian government declared a state of emergency on 31st January 2020 and on 11th March World Health Organization (WHO) officially declared the COVID-19 outbreak a global pandemic. Although the COVID-19 incidence remained considerably lower in Sardinia than in the North Italy regions, which were the most affected, the field of prenatal screening and diagnosis was modified because of the emerging pandemic. Data on COVID-19 during pregnancy are so far limited. Since the beginning of the emergency, our Ob/Gyn Department at Microcitemico Hospital, Cagliari offered to pregnant patients all procedures considered essential by the Italian Ministry of Health. To evaluate the influence of the COVID-19 pandemic on the activities of our center, we compared the number of procedures performed from 10th March to 18th May 2020 with those of 2019. Despite the continuous local birth rate decline, during the 10-week pandemic period, we registered a 20% increment of 1st trimester combined screening and a slight rise of the number of invasive prenatal procedures with a further increase in chorionic villi sampling compared to amniocentesis. Noninvasive prenatal testing remained unvariated. The request for multifetal pregnancy reduction as a part of the growing tendency of voluntary termination of pregnancy in Sardinia increased. The COVID-19 pandemic provides many scientific opportunities for clinical research and study of psychological and ethical issues in pregnant women.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pandemics/statistics & numerical data , Pneumonia, Viral/diagnosis , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/virology , Prenatal Diagnosis/statistics & numerical data , Abortion, Induced/statistics & numerical data , Amniocentesis/statistics & numerical data , COVID-19 , Chorionic Villi Sampling , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Female , Humans , Italy/epidemiology , Male , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/prevention & control , Pregnancy Reduction, Multifetal/statistics & numerical data , Pregnancy Trimester, First , Prenatal Diagnosis/methods , SARS-CoV-2 , Ultrasonography, Prenatal/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL